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Two-scale continuum equations are derived for heterogeneous continua with full nonlinear 
electromechanical coupling using nonlinear mathematical homogenization theory. The resulting 
coarse-scale electromechanical continuum equations are free of coarse-scale constitutive 
equations. The unit cell (or Representative Volume Element) is subjected to the overall mechanical 
and electric fields extracted from the solution of the coarse-scale problem and is solved for 
arbitrary constitutive equations of fine-scale constituents. The proposed method can be applied to 
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1. Introduction 

All industrial materials are heterogeneous at some scale. The overall behavior of materials is 
controlled by their fine-scale structure and materials with tunable fine-scale structure can exhibit 
superior performance at coarse level. Multiphase fine-scale structure allows improving useful 
properties while reducing the effect of undesirable properties of fine-scale constituents. The overall 
properties can be tailored by changing fine-scale structure (mixing different materials at different 
scales, changing the size and shape of constituents, etc) to meet the needs of specific applications. 
Attempts have even been made to state an optimization problem aimed at constructing an optimal 
material architecture [1,2,3,4,5,6,7,8]. Due to the synergy of fine-scale constituents it is possible to 
obtain new properties which are not available in fine-scale constituents alone. Metamaterials 
[9,10,11,12,13] represent one fascinating example of how tuning fine-scale structure provides a 
completely different dynamic behavior of materials. 

Historically, the primary goal of composite materials with tunable fine-scale structure was to 
reduce weight in particular in aerospace applications. More recently, emphasis has been placed on 
electroactive materials, which found their use in actuators, transducers and structures capable of 
changing their properties (behavior) depending on the environment. These are so-called “smart 



structures” where feedback loop comprises of sensors and actuators. The presence of biasing fields 
makes such materials apparently behave differently [14,15], which creates an opportunity to 
control the response of so-called smart structures to various excitations.  Electroactive materials 
are used for actuators, sensors and smart structures. Applications range but not limited to 
underwater acoustics, biomedical imaging [16], robotic manipulations, artificial muscles 
[17,18,19], active damping, resonators and filters for frequency control and selection for 
telecommunication, precise timing and synchronization[14], MEM and NEM devices [20,21,22], 
flow control [23], precise positioning [24, 25], conformal control surfaces [26], power electronic 
devices [27], computer memory applications [21,22], tunable optics, generators for harvesting 
energy, tactile sensors [28,29,30,31], etc. 

Composites, combining electroactive materials with other materials, allow to overcome the 
limitations intrinsic to pure electroactive materials such as low actuation capabilities, high electric 
fields, fast decay and instabilities. The overall properties of such composites are extremely 
sensitive to fine-scale details. Various studies [19,26,32,33,34,35] have shown that 
electromechanical coupling can be significantly improved by making non-homogeneous 
electromechanical actuators, composites of flexible and high dielectric modulus or even 
conductive materials. The overall response of a composite actuator can be vastly superior to that of 
its constituents. In particular, composites based on electroactive polymers have shown tremendous 
promise due to their actuation capabilities resulting from the ability to produce strains of up to 
40% [28,26], and more than 100% in elastomer actuation [36]. The attractiveness of polymers is 
not only due to their electromechanical properties, but also due to their lightweight, short response 
time, low noise, durability and high specific energy. Proper optimization of their fine-scale 
structure can lead to a vast improvement in electromechanical coupling [26]. 

On the modeling front, there are numerous nonlinear models [37,14, 38,39,40,41,42,43,44,45,46, 
47,48,49] capable of describing electromechanical behavior for  large deformation problems. 
There are a number of constitutive phenomenological and micromechanical models for 
electromechanical materials, such as ferroelectric switching [50,51,52,53,54,55]. So while the 
behavior of different phases is well understood and can be described sufficiently well, the 
computational cost of resolving fine-scale details is very high and is often beyond the capacity of 
modern computers. Thus models capable of describing the overall behavior of electroactive 
composites without resolving fine-scale details are needed. The phenomenological equations 
describing the behavior of electroactive composites are usually very complex and often unknown 
and thus there is increasing need for multiscale-multiphysics based methods.  

There are a number of publications which make use of homogenization theory for 
electromechanical coupling in composites and polycrystalline materials, but mostly restricted to 
linear  piezoelectric coupling [1,8,56,57,58,59,60,61,62,63]. For mechanical problems a number of 
homogenization methods accounting for large deformations and arbitrary nonlinear constitutive 
relations have been developed [64,65,66,67,68,69,70,71,72]. In the present manuscript we extend 
the nonlinear homogenization framework proposed in [65] to nonlinear electromechanical 



materials. To the authors’ knowledge this is first attempt to develop a general nonlinear 
mathematical homogenization theory for electromechanical materials. The derivations of this paper 
are applicable to arbitrary fine-scale structures and arbitrary constitutive models of phases. 

 

2. Mathematical model 

First we present the equations describing the behavior of a deformable-polarizable body, subjected 
to mechanical and electrical excitations. The formulation follows the works of Yang and Tiersten 
[37,14]. The approach is based on full electromechanical coupling in a solid via Maxwell stress, 
general nonlinear constitutive equations, large deformations and strong electric fields. Quasistatic 
approximation is adopted. 

Consider deformable-polarizable body occupying volume   with boundary  .  When the body 
is placed in electric field, differential material elements experience both body forces and couples 
due to electric field. There is a full coupling through the Maxwell stress and via the constitutive 

equations [14,50]. Following Tiersten [37], the electric body force EF , couple EC  and power Ew  
are used to derive the balance equations  

 , ,E
j e j i j iF E PE   (2.1) 

 ,E
i ijk j kC P E  (2.2) 

 ,E
m i iw E    (2.3) 

where jE denotes electric field, m  the current mass density, e  the current free charge density 

and  /i xP   the polarization per unit mass. From (2.1) and (2.2), the governing equations  can 

be derived following [14,37]: 

Gauss law 

 , 0,i i eD    (2.4) 

where iD  denotes the electric displacement,  

 0 ,i i iD E P   (2.5) 

iP  and 0  are polarization and  electric constant, respectively. Since divergence of polarization 

determines induced charge density, the total charge density is given by 

 , .t
e e i iP    (2.6) 

The electric field is vortex free which can be written as 



 , 0,ijk k jE   (2.7) 

which implies that electric field can be expressed in terms of the gradient of electric potential   

 , .i iE    (2.8) 

The continuity equation is given by
 

 , 0m m i iv    (2.9) 

and the linear momentum balance equation is 

  , , , ,E E
ij j m i i ij j ij j i m ib F b v            (2.10) 

where ij is Cauchy stress, ib the body force (excluding electric body force); E
ij  is electrostatic 

stress, which is related to electric force ,
E E
ij j iF  .  

The electrostatic stress E
ij

 
can be expressed as 

0 0

1 1

2 2
E
ij i j k k ij i j i j k k ijD E E E PE E E E E          

 
 (2.11) 

Divergence of E
ij  is given by 

 , , , , .E E
ij j j j i j i j e i j i j iD E P E E P E F       (2.12) 

The sum of Cauchy stress ij and the electrostatic stress E
ij  gives the total stress E

ij ij ij    , 

which is symmetric and can be decomposed into symmetric tensor  

 S S
ij ij i j jiPE      (2.13) 

and Maxwell stress tensor 

 0

1
.

2
M M
ij i j k k ij jiE E E E       

 
 (2.14) 

Using the total stress, the balance of linear momentum (2.10) can be rewritten as  

 , .ij j m i m ib v      (2.15) 

The angular momentum balance equation is given by 

    0,E E
ijk jk i ijk jk j k ijk jk jkC P E             (2.16) 

or 



 0,ijk jk    (2.17) 

which suggests that the total stress is symmetric. 

The conservation of energy is given by 

 , .m ij i j m i ie v E       (2.18) 

The free energy can be introduced through Legendre transform 

 ,i ie E P    (2.19) 

and 

 , .m ij i j i iv PE      (2.20) 

The free energy provides the constitutive relations 

  , ,i i j kjP P E   (2.21) 

  , .ij ij k klE    (2.22) 

In the present manuscript the weak form of governing equations will be expressed in the initial 
configuration. Therefore, we will transform the strong form of governing equations into the initial 
configuration.  The balance laws in the so-called in Lagrangian description are given by 

 , 0,J J E D  (2.23) 

where 1
,L L i iJF DD  and E e J   are Lagrangian description of electric displacement and charge 

density,  1
,i i L LD J F D . 

Electric field is vortex free in the Lagrangian description and is given by 

 , 0,IJK K J E  (2.24) 

where , , , ,K i i K i i K KE F F     E  is Lagrangian description of electric field, 1
,i K K iE F E . 

Equation (2.24)  can be used implicitly to describe electric field as a gradient of electric potential. 

 , ,kL L k M kK B   v  (2.25) 

where 1
,iL L j ijK JF 

 
and M mJ   are the first Piola-Kirchhoff stress and material density,  

respectively, and 1
,ij j L iLJ F K  . iLK  is nonsymmetric satisfying 

 , 0,kij j L iLF K   (2.26) 



which confirms that moments resulting from electric body force acting on the infinitesimal volume 
are equilibrated by internal forces. 
The energy balance equation is given by 

 ,S
M KL KL K KT S     P E  (2.27) 

where the second Piola-Kirchhoff stress S
KLT  is  

 1 1
, , .S S

KL K k L l klT JF F    (2.28) 

The Green-Lagrange strain is given by  

  , , , , / 2KL K L L K M K M LS u u u u    (2.29) 

and the Lagrangian description of polarization vector KP  is   

 1 1
, ,, ,K K k k i i K KJF P P J F  P P  (2.30) 

 1
, , .S S

ij ij i j i K i L KLPE J F F T      (2.31)

 
The energy balance determines constitutive equations, which can be written as 
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iLK and LD may be calculated from 
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To complete the strong form (2.23), (2.25), (2.32), (2.33) of the initial-boundary value problem is 
given by 
 

 

 

 

,

,

,

,

0 0,

0 ,

u
i i

T
kL L K

K K

i i

i
i

u u on

on

K N T on

D N on

u u at t

u
v

t





 



 

 

 

  

 






 (2.34) 



where  is surface charge density applied on the portion of the surface   and KT is mechanical 

traction applied on the portion of the surface T ; iu and   are displacements and electric 

potential prescribed on the surfaces u and  , respectively, such that 

 
0

u T

u T

 

 

      

     
 (2.35) 

The free energy, which determines constitutive relationships for nonlinear electroelastic materials, 
can be written as power series of  ABS  and AE   [14] 

  2 2 3
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(2.36) 

where constants 2 ABCDc , ABCe , 2 AB , 3 ABCDEFc , ABCDEk , ABCDb , 3 ABC , 4 ABCDEFGHc , 2 ABCDEFGk , 

1ABCDEFa , 3 ABCDEk  4 ABCD  are often referred to as the fundamental material constants. The structure 

of  ,KL KS E  depends on the symmetries of particular materials under consideration [73,74]. 

From the above strong form (2.34) it follows that the electric fields, E  and P , are coupled to the 
mechanical fields, F  and K , at two levels [50]. First, is the electrostatic coupling, when the 
electric fields directly generate distributed forces via Maxwell stress, which in turn affects the 
mechanical equilibrium of a solid. The resulting stresses depend on the second order terms of 
electric field, and while typically very small (10-5 MPa for a lMV/m field), could have a significant 
effect if the fluctuations of the electric field are large (field singularities) as in the case of 
heterogeneous media with high contrast in the dielectric moduli or in electrodes and conducting 
crack tips [75,76,26]. This nonlinear phenomena is universal and common for both, dielectrics and 
conductors [77], and has no converse effects, since the mechanical stress state does not directly 
influence the electrostatic balance [50], but can affect it through the motion, when such a motion 
changes electric field. 

The second level of coupling occurs in the constitutive behavior of  dielectric materials, expressed 
by equations (2.21), (2.22) or (2.32), (2.33). Polarization induces strain, while mechanical stress 
affects polarization, which introduces full coupling. Most common electromechanical materials are 
piezoelectrics, ferroelectrics and electrostrictors [78].  

In piezoelectrics, there is a linear dependence between applied stress and induced electric 
displacement (direct piezoelectric effect)  

 i ijk jkD d   (2.37) 

and between applied electric field and induced strain (inverse piezoelectric effect),  

 ,ij kij kd E   (2.38) 



where dijk are piezoelectric coefficients. A positive electric field results in positive strain, and vice 
versa, negative electric field results in negative strain. 

Ferroelectric materials have spontaneous polarization Ps in absence of external electric field. The 
charge due to spontaneous polarization is usually masked by the charges from surroundings of the 
material. Direction of spontaneous polarization can be switched by external electric field. Thus 
ferroelectric polycrystallines are characterized by hysteresis in polarization-electric field P(E) and 

induced strain-electric field (E). 

In electrostrictive materials induced strain is proportional to the square of polarization  

 ,ij ijkl k lQ P P   (2.39) 

where Qijkl are electrostrictive coefficients. For mildly strong electric fields, the dependence 
between polarization and electric field is linear and (2.39) may be written as 

 ,ij ijkl k lM E E   (2.40) 

where Mijkl=kmlnQkmln and ij  is dielectric susceptibility. Formulation of ‘converse’ 
electrostrictive effect is also possible [79]. Here both, positive and negative electric fields result in 
positive longitudinal strain. 

In both, electrostriction and electrostatic coupling the overall behavior is determined by the 
average of the fluctuation of the electric field (rather than its average). Therefore one can obtain 
large coupling with relatively small macroscopic field [19,35]. Huang et al. [35] described a three-
phase polymer based actuator with more than 8% actuation strain attained with an activation field 
of 20 MV/m.  

 
 

3. Mathematical homogenization for nonlinear coupled electromechanical problem 
 
In this section we will introduce scale separation and proceed with deriving equations for different 
scales from the strong governing equations in the Lagrangian description derived in the previous 
section.  

Consider a body with volume   and surface    made of heterogeneous solid with 
characteristic size of the heterogeneity l which is much smaller than the body dimension so that 
heterogeneities are considered to be “invisible”. The body is effectively homogeneous at the coarse 
scale;  its fine-scale structure can be observed by zooming (Figure 1) at any coarse-scale point A. 
We will denote the volume and boundary of the body on the coarse-scale by   and  , 
respectively. 



 

Figure 1. A body with fine‐scale heterogeneities 

To describe the dependence of various fields   X  on the coarse-scale and fine-scale 

coordinates we will introduce global coordinate system X and local (unit cell) coordinate system Y 
associated with fine-scale structure placed at every coarse-scale point. The two coordinates are 

related by / Y X , 0 1  . Dependence of the field   X  on the two scale coordinates is 

denoted as 

    ,  X X Y  (3.1) 

where superscript   denotes existence fine-scale details.  

We assume that the body is composed of a periodic repetition of unit cells (UC) with volume Y . 

The periodicity may be global, when the whole body is a lattice consisting of unit cells Y  (Figure 

2.a), or local, when periodicity holds only in a small neighborhood of coarse-scale point (Figure 
2.b). Unit cell coordinates Y in (3.1) are defined with respect to the initial (undeformed) fine-scale 
configuration. 

     

(a)               (b) 



Figure 2. Global (a) and local (b) periodicity. 

To construct the weak form of the governing equations we will need to integrate over the volume 
 . This can be carried out as long as the size of unit cell is infinitesimally small, which yields the 

following fundamental lemma of homogenization ([80,81] 
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  X Y X Y  (3.2) 

which also implies that the fine-scale domain Y  exists at every point in the coarse-scale domain 

(Figure 3.).   

 

Figure 3. Transition from the  heterogeneous to homogeneous domain as  0   

To derive the coarse-scale equations we will start from the equilibrium equation and Gauss law in 
the Lagrangian description (2.23), (2.25). As before superscript   denotes dependence of a 
quantity on fine-scale details 

    , ,kL L k MK F B     X E v,  (3.3) 

    , , 0J J EF    XED  (3.4) 

with initial and boundary conditions 
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Utilizing the asymptotic expansion [82,83,84] of displacement and electric potential fields yields 

            0 1 2 2 3, , , ,i i i i iu u u u u O       X X Y X X Y X Y  (3.7) 

            0 1 2 2 3, , , .O          X X Y X X Y X Y  (3.8) 

The size of the unit cell is of the order   and in the limit it is assumed to be infinitesimally small, 

so that first terms in asymptotic expansions for  iu X   and  0 X  do not depend on fine-scale 

coordinate Y. This has been shown to be a unique solution for linear elliptic problems. Note that 
for certain class of nonlinear problems, such as problems involving softening and localizations as 
well as neutronic diffusion, radiative transport problems [85], one has to consider large oscillations 
in the leading order term in which case the first term in asymptotic expansion will depend on fine-
scale coordinates Y. 

Expanding every term in (3.7) and (3.8) in Taylor series around the unit cell centroid ˆX X  yields 
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where ˆ
J J JX X Y   was used. 

Substituting the above into asymptotic expansions (3.7), (3.8) gives the modified asymptotic 
expansion 
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where 
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and similarly for potential 
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where 
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In the classical homogenization the spatial derivative is defined as  
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. Since in the modified asymptotic expansions (3.13) and (3.15) all terms are calculated with 

respect to the UC centroid X̂ , there is no dependence on X  and the spatial derivative reduces to 
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Thus displacement gradient may be expressed as 
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where 
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The asymptotic expansion of the deformation gradient is given as  
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where 
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Similarly, the electric field is given as negative derivatives of electric potential 
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 (3.23) 

where 

          
1 01

0 *

ˆ

ˆ ,ˆˆ ˆ ˆ, ,C
J J J

J J JY Y X

   
      

  
X

X Y X
X Y X X,YE E E  (3.24) 

          
10 2

* 1

ˆ

ˆ , ˆˆ ˆ ˆ, , , .C
J J J

J J JX Y Y

  
     

  
X

X YX
X X, Y X YE E E  (3.25) 

The coarse-scale deformation gradient C
iKF  and electric field  C

JE  are related to the average of the 

leading order deformation gradient  0 ˆ ,iKF X Y  in (3.21) and electric field   0 ˆ ,J X YE  in (3.24) over 

the unit cell domain 
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where conditions 
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to periodicity (or weak periodicity) of fine-scale displacement and potential fields, which will be 
discussed in the next section. 

Expanding stress and electric displacement in Taylor series around the leading order deformation 

gradient  0 ,F X Y  and electric field  0 ˆ ,X YE
 
yields  
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Taylor expansion of stress and electric displacement around the unit cell centroid X̂  yields 
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Again, here the relation  ˆ
i i iX X Y   has been utilized. Further substituting above into 

equilibrium equation (3.3) and Gauss law (3.4) yields 
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Collecting terms of equal orders in (3.32), (3.33) yields the two-scale equilibrium equation and 
Gauss law 
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Integrating  0O   equations over the unit cell domain and exploiting 
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, which correspond to periodicity (or weak periodicity) of fine-scale stress and 

electric displacement, yields the coarse-scale equations 
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where 
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Hereafter we will make use of an argument of the unit cell infinitesimality by which the unit cell 

centroid X̂  can be positioned at an arbitrary point X . Therefore, the centroid X̂ can be replaced 
by an arbitrary point X . Equations (3.36) with boundary conditions (3.5)  define the coarse-scale 
boundary value problem. 

The set of equations (3.34) together with periodic (or weakly periodic) boundary conditions, 
discussed in the next section, defines fine-scale boundary value problem. 

 

4. Boundary conditions for the unit cell problem 

In this section various boundary conditions imposed on the unit cell will be considered.  The most 
common are the periodic boundary conditions, when the displacement and electric potential 
perturbations on the opposite sides of the unit cell are assumed to be equal. 

Consider the asymptotic expansions for displacement and electric potential fields (3.13), (3.15) 
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where (3.25) and (3.26) were used. The leading order terms, which represent the rigid body 
translation of the unit cell and constant potential, are independent of the unit cell coordinates Y. 
The   O   terms describe the unit cell distortion and electric field in it. The terms 

  ˆ ,C
iJ iJ JF t YX and  ˆ ,C

J Jt YXE  represent a uniform coarse-scale deformation and uniform 

coarse-scale electric field, while the terms  1 ˆ , ,iu tX Y  and  1 ˆ , , t X Y capture the deviations from 

the uniform fields induced by material heterogeneity. These terms are important for electrostriction 
effect [26]. Making these terms larger increases the electrostriction effect. 

Figures 4(a) and 4(b) show the initial and deformed shape of the unit cell, respectively. The dotted 

line in Figure 3(b) depicts the deformed shape of the unit cell due to   ˆ ,C
iJ iJ JF t YX , whereas 

the solid line shows the contribution of the two ( )O  terms.  

At the unit cell vertices vert
Y , the deviations from the uniform fields,  1 ˆ , ,iu tX Y and  1 ˆ , , t X Y ,  

are assumed to vanish. For the remaining points on the boundary of the unit cell, the deviations 

from the average    1 1ˆ ˆ, , , , ,i iu t tX Y X Y  are prescribed to be periodic functions. Figure 4 depicts 

two points M and S on the opposite faces of the unit cell with M and S termed as the master and 
slave points, respectively. The displacements of the two points are given as  
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Subtracting equation (4.2) from (4.1) and accounting for periodicity, i.e. 

   1 1ˆ ˆ, , , ,M S
i iu t u tX Y X Y , gives a multi-point constraint (MPC) equation  
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i i iJ iJ J Ju t u t F t Y Y   X Y X Y X  (4.3) 

where YM and YS represent the local coordinates of the master and slave nodes on the unit cell 
boundary, respectively.  

Similarly, periodicity of electric potential perturbations    1 1ˆ ˆ, , , ,M St t X Y X Y
 

gives the 

following constraint equation 

       ˆ ˆ ˆˆ ˆ, , , , , .M S C M S
J J Jt t t Y Y    X Y X Y XE  (4.4) 



 

Figure 4: Definition of periodic boundary conditions 

Periodic boundary conditions can be used for periodic heterogeneous medium and when the unit 
cell distortion is not considerable, otherwise they are not physical. For nonperiodic medium or in 
case of large unit cell distortions more general boundary conditions have to be used instead. Note 
that the only time when the periodicity condition was exercised was in deriving equations (3.26), 
(3.27). For (3.26), (3.27) to hold the following conditions must be satisfied 
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Applying Green’s theorem and exploiting relations (3.14)b, (3.16)b, and (3.26), (3.27) the above 
reduces to 
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where Y is the boundary of Y  and KN are the components of the unit normal to the boundary 

Y . Equation (4.6) represents the so-called weak periodicity condition. 

Alternatively to equations (4.3), (4.4) and (4.6)  an essential boundary condition  
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is often exercised in practice. It corresponds to zero perturbations from coarse-scale fields on the 
unit cell boundary. 
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The essential boundary conditions can be enforced either in the strong form (4.7) or in the weak 

form as 
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where ,i    are the Lagrange multipliers representing unknown tractions and surface charge 

density on Y . If we choose ,C C
i iJ J J JK N N  D  where ,C C

iJ JK D are constant over Y and 

require (4.8) to be satisfied for arbitrary C
iJK  and C

JD , we then obtain equation (4.6). Therefore, 

equation (4.6) will be referred to as a weak compatibility boundary condition while equation (4.7) 

as the strong compatibility condition. Equation (4.6) is in the spirit of the work of Mesarovic [86] 

who imposed the unit cell to satisfy average small strains. 

The different boundary conditions can be denoted for generality 
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5. Two-scale problem 

The two-scale problem, consisting of the unit cell equations (3.34) subjected to periodic (or other) 

boundary conditions (4.9) and the coarse-scale equations (3.36), is two-way coupled.  The link 

between the two scales is schematically shown in Figure 5. 

 



 
 
 

Figure 5: Information transfer between the coarse‐scale and fine‐scale problems 

The fine-scale problem is driven by the overall (coarse-scale) deformation gradient  ˆ ,C
iKF tX  and 

electric field  ˆ ,C
K tXE . They are calculated for every material point of the coarse-scale problem 

(in practice only for integration points of the coarse mesh) and used together with (4.9) to 

formulate boundary conditions to be imposed on the unit cell.  Once the unit cell problem is 

solved, it provides the coarse-scale problem with coarse-scale stress C
iJK

 
and electric displacement 

C
JD  via (3.37), (3.38).  

This effectively provides a coarse-scale constitutive relationship. Additionally, the local coarse-

scale consistent tangent is derived from the fine-scale stiffness.  

This scale-bridging approach belongs to the category of information-passing (sometimes referred 

to as hierarchical or sequential) multiscale methods which evolve a coarse-scale model by 

advancing a sequence of fine-scale models in small windows (representative volume or unit cell) 

placed at the Gauss points of the discretized coarse-scale model. 

 

The coupled two-scale problem is summarized below: 
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(b) Coarse-scale problem 
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6. Finite element discretization 

Both the coarse- and fine-scale problems are discretized using finite elements. The displacement 

and electric potential fields of the fine-scale problem  1 ˆˆ , ,iu tX Y ,  1 ˆˆ , , t X Y
 
are approximated as 
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where subscript B denotes the node number, 1 ( )BN Y  are the unit cell shape functions and 1 1,iB Bd   

are the nodal displacements and potentials in the unit cell mesh. Let    ˆ ˆ, , ,M M
iC Cd t tX X  be the 



master (independent) degrees of freedom and express 1 1,iB Bd   by a linear combination of  ˆ ,M
jCd tX

and  ˆ ,M
C t X  defined by  
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so that the constraint equation (4.9) in the discrete form is satisfied  
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Then writing the Galerkin weak form of (5.1) and discretizing it using (6.1) yields the discrete 

residual equation: 
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where the left subscript and superscript denote the load increment and the iteration count (for 

implicit method) at the coarse-scale, respectively; 1 1
1

m d
n iBr
  and 1

Cr
 ,  1 1

1
m
n iBd
   and 1 1

1
m
n 
  are the 

residuals, displacement and potential increments in the th( 1)m  iteration of the th( 1)n  load 

increment, respectively.  If the constitutive equations are defined in terms of the Cauchy stress and 
electric displacement in the current configuration it is convenient to restate the unit cell problem as 
follows: 
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where we have exploited the relation between the first Piola-Kirchhoff stress iKK , electric 

displacement KD  in the Lagrangian description and their current configuration counterparts, 

Cauchy stress ij  and electric displacement iD  
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and J in (6.6) is the determinant of jKF .  

Similarly, the coarse-scale displacements and potential 0 0ˆ ˆˆˆ ( , ), ( , )iu t tX X  are discretized as 
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where ˆ( )C
AN X , C

iAd  and C
A  are the coarse-scale shape functions, nodal displacements and 

potential, respectively. Writing the weak form of (5.2) and using discretization (6.7) the discrete 

coarse-scale equations can be expressed as 
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where 1 1,d C C
n iA n iAr r   and 1 1,C C

n iA n Ad     are the coarse-scale residuals, displacement and potential 

increments in the th( 1)n  load increment, respectively, and  
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where ijABM  is the mass, int
iAf  and ext

iAf  the internal and external forces, respectively. It is again 

convenient to express the coarse-scale governing equations in the deformed configuration 
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and CJ  is the determinant of C
iJF ; x , xd , x , xd  denote volume, infinitesimal volume, 

boundary and surface element in the current configuration. 

We now focus on deriving a closed form expression for the overall Cauchy stress C
ij

 
and electric 

displacement C
jD .  Substituting (6.6)  into (3.37), (3.38) and recalling y Yd Jd   , we have 
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Inserting (6.21) into (6.20) and denoting the volume of the coarse-scale (intermediate) 

configuration as *
y YJ   , the overall quantities can be expressed as  
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where 1 1C
jm jK KmF F F    maps the fine-scale deformed configuration y into the coarse-scale 

deformed configuration *
y  as illustrated in Figure 6.  

 

Figure 6: Unit cell configurations: (a) initial, (b) coarse‐scale (intermediate), (c) fine‐scale deformed 

(final) 

The coarse-scale problem may be solved using either explicit or implicit time integration [87].  

7. Numerical examples 

In this section we will consider a numerical example illustrating the ability of the mathematical 
homogenization to resolve the coarse-scale behavior of heterogeneous materials with nonlinear 
electromechanical coupling subjected to electric field. The results of the mathematical 
homogenization (to be referred as MH) will be compared to the direct numeric simulation (DNS) 
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where a very fine mesh is employed to resolve fine-scale details. For simplicity, we will consider 
two-dimensional problem (plane strain).  

For nonlinear electromechanical material we will use a simple relaxor ferroelectric material model 
proposed in [50], where polarization and strain are used as independent variables. It is assumed 
that material is isotropic, where the stress depends linearly on total strain. The polarization induced 

strain E  depends on the square of polarization, i.e., it is electrostrictive material, where  

polarizations saturates to SP  at high electric fields.  The internal energy function for relaxor 

ferroelectric was proposed by Hom and Shankar as 
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E is polarization-induced strain defined as  
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C  and Q  are an isotropic elastic stiffness matrix and an isotropic electrostrictive strain coefficient 

matrix; k is material constant; coefficients 11Q  and 12Q  are defined so that the longitudinal and 

transverse induced strains relative to polarization direction are 
2

11Q P  and 
2

12Q P , respectively.  

Stress and electric field are calculated from the internal energy by differentiation 
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The first term in (7.4) represents the converse electrostrictive effect, while the second term 
represents the stress-free dielectric behavior. Polarization can be written in more compact form as 
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where 
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For a given strain and electric field (which are known from the previous iteration), one can solve 
(7.5) for induced polarization and then use (7.3) to calculate stress. The Jacobian for the 
constitutive model can be derived from (7.5) and (7.3) as 
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Y(GPa)  Q11(m
4/C2) Q12(m

4/C2) Ps(C/m2) k(m/MV) 
115 0.26 1.33x10-2 -6.06x10-3 0.2589 1.16 

Table 1. Model parameters for PMN-PT-BT at 5oC 

 

(a) Polarization as function of 
electric field 

 

(b) Electric field‐induced strain 
 

 

Figure 7. Electrostrictive material model 

 

Numerical values of model parameters for PMN-PT-BT at 5oC are given in Table 1. Dependence 
of polarization and induced strain on electric field is presented in Figure 7. 

The above model is valid for small strains, so consequently we consider a problem where induced 
strains are small, in which case stress, strain, electric displacement and electric field coincide in 
initial and deformed configurations. 

 



7.1 Actuator example 

This example demonstrates the ability of mathematical homogenization to model the dependence 
of coarse-scale behavior on fine-scale details.  

Consider a beam with top half made of electroactive material and lower half made of material with 
no electromechanical coupling (Figure 8).  The electroactive material is a periodic composite with 
unit cell consisting of matrix material and horizontal electroactive fiber. Both materials have the 
same mechanical properties (linear isotropic material with Young modulus E  and Poisson ratio 
), with fiber additionally having electromechanical coupling – electrostriction with parameters 
given in Table 1. Unit cell dimensions are 100x100. 

The left side of the beam is mechanically fixed and grounded. A potential 36GV is applied to the 
right hand side of the beam. 

(a) undeformed beam (b) unit cell 

 
(c) deformed beam 

Figure 8: a) geometry of  the beam and boundary  conditions:  the upper half  is made of heterogeneous 

material, containing electroactive phase and phase without electromechanical coupling and consisting of 

periodic repetition of unit cells, b) a unit cell consisting of matrix and electrostrictive horizontal fiber,   c) 

deformation of the beam when voltage is applied to the right side 

When voltage is applied, the electrostrictive material in the upper half of the beam extends due to 
electrostriction effect and the beam will bend as shown on figure 8.c. This permits using the beam 
as an actuator. 

We considered three cases with different fiber thicknesses (diameter in 3D) a: a=100 (i.e. the 
whole unit cell consists of electrostrictive material), a=60 and a=40. The deflections of the point A 
for different fiber thicknesses a found by DNS-simulation are shown in Figure 9.a. It can be seen 
that different fiber sizes result in different actuation capabilities for the same loading, i.e., coarse-
scale response is sensitive to the fine-scale details.  

(a) (b) 



 

(c) (d) 

Figure  9:  (a)  displacements  of  point  A,  DNS  simulations  of  actuation  with  different  fractions  of 

electrostrictive phase  and Comparison of DNS (red line) and MH (blue line for 96 element and green line 

for 192 elements) solutions, for different thicknesses of electroactive fiber b) a=100, c)a=40 d) a=20. 

   

The purpose of homogenization is to capture this dependence. Figure 9 shows also the comparison 
of DNS simulation with MH for different values of a. The MH simulations were performed for two 
different meshes with 96 elements and with 192 elements to study the convergence of MH solution 
to DNS solution. For a=20, the error between DNS and MH was 4.8% for 96 element mesh and 
1.3% for 192 element mesh. For a=40, the error was 4.9% and 1.4%, respectively.  For a=100, 
error was 5%. These results suggest that the mathematical homogenization is capable of 
reproducing the reference solution and captures the dependence of the coarse-scale response on 
fine-scale details. 

7.2 Beam bending 

Now consider the whole beam made of an electrostrictive material subjected to a linearly varying 
traction 0.25 10 5F E Y    Pa, as shown in Figure 10. The left side of the beam is mechanically 



fixed and grounded. Electric potential  is applied to the right hand side of the beam. Again, the 
unit cell consists of matrix and fiber as depicted in Figure 8.b. with a=40. The matrix is assumed to 
be hyperelastic material with stress depending exponentially on the first invariant of the strain 

1 11 22I    . 

 

Figure 10.  Beam with mechanical load applied to the left end. 

The application of electric field changes the mechanical properties of the beam which results in 
different deflections under the same loading. We compare the results of DNS and MH to show the 
ability of MH to capture the change of mechanical properties due to biasing fields. 

Figure 11 shows the deflection of point A for the two cases. In the first case the applied potential 

was =36GV. The result of DNS simulation is depicted by red line and MH (192 elements) 
simulation is depicted with a green line. The difference between DNS and MH at time t=0.5 was 
5.6% for 96 elements and 1.6% for 192 elements. In the second case the right end of the beam was  

grounded,  =0. The result of DNS simulation is depicted by blue line and MH (192 elements) 
simulation is depicted by magenta line. The difference between DNS and MH simulation at time 
t=0.5 was 5.2% for 96 elements and 1.5% for 192 elements. 

It can be seen that the mathematical homogenization is capable of capturing the change of 
mechanical properties due to biasing electric fields and reproduces the reference solution with 
good approximation. 

 

 

 



 

Figure 11. Comparison the DNS and MH simulations for beam bending. 

 

8. Conclusions and future work 

The examples considered in this manuscript show that nonlinear mathematical homogenization 
captures well the coarse-scale behavior of heterogeneous electroactive composite and its 
dependence on the fine-scale details.  

At the same time the method shares the shortcomings common to the first order homogenization 
methods; it is insensitive to the absolute size of the UC because of assumption of UC 
infinitesimality [81].  This lack of accuracy increases with the unit cell size and the magnitude of 
strains and electric fields inhomogeneities.  

In future we plan to study mathematical homogenization for various dynamic problems. In 
particular of interest are studies of wave propagation in the media with periodic resonant 
structures. It would be interesting to explore if mathematical homogenization can capture the 
negative effective refractive indexes as it was found in metamaterials. Can this framework be used 
to control bandgaps by biasing fields and will it allow extending effective bandgaps for use in 
various devices (for subwavelength imaging, wave attenuation etc). The other interesting 
phenomenon, which possibly may be studied using mathematical homogenization is the controlled 
response of smart structures to various impacts. Depending on the impact a control strategy may be 
developed to obtain the desired response from the smart structure. This phenomenon might be 
utilized in development of smart armor and other structures. Fine-scale structure optimization 
aimed at optimizing coarse-scale properties, in particular for electroactive polymers containing 
composites, is another useful application of the method. The asymptotic expansion would allow to 



isolate the term  1 ˆ , , t X Y , responsible for electrostrictive and electrostatic coupling. Making this 

term larger will permit increasing the actuation. 
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